COMMUNICATION PROTOCOLS FOR ETHERNET IN THE VEHICLE

AUTOMOTIVE BUS SYSTEMS AND ETHERNET
09 – 11 DECEMBER 2013, STUTTGART MARRIOTT HOTEL SINDELFFINGEN

Dr. Lars Völker, BMW Group.
AGENDA

- Use cases and requirements
- Example protocol stack
- Challenges on the basis of SOME/IP
 - (scalable Service-Oriented Middleware over IP)
- Summary
USE CASES AND REQUIREMENTS

• Question: What do you want to do with Ethernet in the vehicle?
USE CASES AND REQUIREMENTS
SELECTED USE CASES FOR ETHERNET IN VEHICLES

Infotainment systems
e.g. RSE connection or AV transport

Drivers Assistance
e.g. surround view

Ethernet Domain Backbone

Diagnostics and Flash Update
USE CASES AND REQUIREMENTS
REQUIREMENTS FOR AUTOMOTIVE MIDDLEWARE

- Support CAN like communication

- Support MOST like control communication

- Shall efficiently support switched medium like Ethernet (not a bus!)
 - Support unicast communication
 - Limit multicast/broadcast to acceptable level
USE CASES AND REQUIREMENTS

WHAT HAVE WE DONE?

• With Ethernet, we tried to reuse as many protocols as possible:
 • Ethernet is a well proven technology
 • TCP/IP stack is proven solution, why develop a new one?
 • Parts of AVB fit out of the box, others need some adaption

• However:
 • Finding a suitable middleware solution to transport control data was not that easy!

• So SOME/IP was created!
Most parts are reused but on Layer 1 and Layer 7 specific protocols are needed.
SOME/IP CONCEPTS MIDDLEWARE

- **SOME/IP** allows applications to communicate.
- Packet formats are automatically determined by the specification of the Service.
- **Server** offers a **Service Instance** that implements the **Service Interface**.
- **Client** uses the **Service Instance** using **SOME/IP**.

SOME/IP allows applications to communicate over Ethernet and TCP/IP.
A Service is an interface that contains Methods, Fields, and Events.

Client ≠ AUTOSAR Client/Server.

SOME/IP CONCEPTS SERVICE

Services

A Service is defined by its Service Interface. This is comparable to a MOST Functional Block (FBlock) and may include:

- **Methods:**
 - With response (Request/Response).
 - Without response (Fire&Forget).

- **Events:** Message from Server to Client when something happens.

- **Fields:** Getter/Setter/Notifier of a property/status.

- **Eventgroups:** A logical group of Events and Fields used for publish/subscribe handling.
SOME/IP CONCEPTS
REQUEST WITH RESPONSE METHOD

Request/Response methods allow calls with answers.

Services: Request/Response Methods

Request – a message from client to server calling a method.

Response – a message from server to client transporting the results of the method invocation.

Request/Response – a method call with Request and Response messages.
SOME/IP CONCEPTS

FIRE&FORGET METHOD

Request – a message from client to server calling a method.
Fire&Forget – a method invocation with just a Request message.
Message Type „REQUEST_NO_RETURN“. Does not support answers and errors.

Fire&Forget methods do not have answer messages.
SOME/IP CONCEPTS

EVENTS

Events

Events are simple messages from Server to Client.

Services: Events

- **Event** – a Fire&Forget callback, that is sent out by the Server (e.g. cyclically or on change).
- **Sent from Server to Client.**
- Similar to regular CAN messages.

Dr. Lars Völker, BMW Group, Communication Protocols for Ethernet in the vehicle, 2013-12-09
SOME/IP CONCEPTS

FIELDS

Fields are properties that may include a Getter, a Setter, and a Notification.

Services: Fields

- **Field** – represents a remote accessible property that includes Getter/Setter and/or Notification.
- **Getter** – Method to read field value.
- **Setter** – Method to set field value.
- **Notification** (sends out Events with new values on change of field value).
- **Similar to a property on MOST.**
SOME/IP CONCEPTS
FIELDS (2)

Field consists of:
- 0..1 Getter → Request/Response
- 0..1 Setter → Request/Response
- 0..1 Notifier → Events

GETTER/SETTER/NOTIFIER UINT16 vehicleSpeed

- **Event** `vehicleSpeed(UINT16 vehicleSpeed)`
- **Method** `setVehicleSpeed(UINT16 vehicleSpeed) returns UINT16`
- **Method** `getVehicleSpeed() returns UINT16`

Field consists of Getter, Setter, and Notifier.
EVENTS VS. FIELDS

- Event is only when something happens.
- Events do not have initial values.
- The lifetime of an Event is not defined.
- Status based elements shall be modeled as Field.
- Event messages of Event and Field are identical.
- Difference: Initial Events only exist for Fields.

Use Events for time limited observations, Fields for status like data.
Service Discovery is used to explicitly signal:
- Status of Service Instances (available or not)
 - as well as how to reach the service
- Publish/Subscribe
 - Which Events/Fields does a client need?

This state is transported using cyclic messages carrying entries:
- Service: Find, Offer, and StopOffer
- Eventgroup: Subscribe, StopSubscribe, SubscribeAck, and SubscribeNack

Service Discovery transports status explicitly

Service Discovery handles Service State as well as Publish/Subscribe.
CHALLENGES
EXAMPLE SOME/IP

• Architecture for different systems (e.g. AUTOSAR and GENIVI)
 • AUTOSAR is based on CAN and FlexRay messages, Ethernet is more dynamic
 • Ethernet is common to Linux (e.g. GENIVI)
 • What’s a good compromise for a protocol?

• Agile process (specification and implementation in parallel)
 • More innovation in less time
 • AUTOSAR process stressed

• Testing a complex protocol stack
CHALLENGES AUTOSAR AND GENIVI

Socket Adaptor, COM and RTE for SOME/IP. SD has own module.

SOME/IP and SOME/IP-SD are implemented using library.
CHALLENGES
AUTOSAR ROADMAP

Resource optimization

2nd gen (AUTOSAR 4.1)

- SOME/IP Serializer (?)
- Enhanced Serializer Interface
- More efficient data path

Feedback

1st gen (AUTOSAR 4.0)

- SOME/IP Serializer Tech Report
- Serializer Support in RTE C/S
- Service Discovery SWS (SOME/IP-SD)
- Restructuring (SoAd TCP, …)

SOME/IP specification by BMW

Initial Ethernet Support in AUTOSAR: Socket Adaptor, UDP-NM, If, …

Fast pace roadmap reflected in AUTOSAR standardization.

Dr. Lars Völker, BMW Group, Communication Protocols for Ethernet in the vehicle, 2013-12-09
CHALLENGES
TESTING SOME/IP AND SOME/IP-SD

- Protocol stack testing often requires support for the testing
 - The test application is called Enhanced Testability Service (ETS)
 - Different methods, events, and fields are included
 - Standardization of ETS is in discussion
SUMMARY

- Use cases different to “IT world”
- Vehicle is not plug-and-play
- Automotive solutions needed
- Reuse as much as possible
- Add automotive protocols
- Optimize for limited resources
- Only Automotive Middleware
- Supports GENIVI and AUTOSAR
- Service Discovery signals explicitly
- Support different architectures
- Agile process vs standardization
- Testing complex protocols

Ethernet-based in-vehicle communication comes with solvable challenges!