Hybrid4All:
A low voltage, low cost, mass-market hybrid solution

Daniel BENCHETRITE, System and Integration Dept. Manager
Valeo Powertrain Systems
Agenda

1 Market Analysis
2 Main issues of Hybrid / Electric vehicles
3 Simulation approach
4 Valeo Components
5 Conclusions
Agenda

1. Market Analysis
2. Main issues of Hybrid / Electric vehicles
3. Simulation approach
4. Valeo Components
5. Conclusions
Regulation is the main driver of Powertrain evolution

Consensus on regulation target

- **2020**
 - 5 l/100 km (117g) for P Cars
 - 4.5 l/100 km (106g) for P Cars

- **2025**
 - 54.5 mpg
 - 93g CO₂/km eq
 - NEDC for P Cars
 - 3.9 l/100 km

- **2020 (cars only)**
 - 95g CO₂/km
 - 4.0 l/100 km

US Speeding up, China have set up the rules
All catching up on Europe

China's target reflects gasoline vehicles only. The target may be lower as all vehicles are considered.

October 2013
To reach 95g, ICE and transmissions efficiency is not enough. Hybrids and EVs will be necessary.
There are a lot of Hybrids

From simple Start-Stop to ZEV mode

Micro Hybrid

Mild Hybrid

Full Hybrid

Plug In Hybrid

Range Battery EV

Fuel Cell EV

Smart

Buick LaCrosse

Honda Insight

Toyota Prius3

GM Volt

Nissan Leaf

+ Electric drive

+ Electric take off

+ Engine Torque assistance

+ Kinetic Energy recovery

Stop & Start

October 2013 | 6
There are a lot of Hybrids

By definition, an Hybrid has 2 DNAs; combustion and electric engines

- Electric motor on Combustion Engine (Buick LaCrosse)
- Electric motor in transmission (Toyota PRIUS)
- Electric motor on rear axle (PSA 3008 HY4)

October 2013
Electrification Forecast: Worldwide

Vehicles <6T, Oil barrel $120 2020, Li-Ion Battery 300 €/kWh 2020

Source: 2013 Valeo Powertrain Forecast

Internal Combustion Engine

- **Growth of Stop-Start**
- **FULL as niche, then growth**
- **MILD take-off**
- **Emergence of PHEV**
- **Stop-Start**

Trends

- **BEV/FCEV**: only 1.6% in 2023, still a limited market (lower segments), urban usage or image product
- **EREV**: not confirmed
- **FULL / PHEV**: faster growth than in last forecast, growing weight of PHEV from 2018 – 2019
- **MILD**: market take off delay, rather in 2018
- **Stop-Start**: getting mainstream with regular growth from now – still 23% CONV, mainly in BRICS

October 2013 | 8
Electrification Forecast: Europe

Vehicles <6T, Oil barrel $120 2020, Li-Ion Battery 300 €/kWh 2020

- **Fast growth of Stop-Start**
- **Emergence of Electric**
- **Growth of MILD / FULL**

Trends

- **BEV/FCEV:** lower forecast than in the past (A / B / C + LCV), EREV remaining a niche
- **FULL / PHEV:** growing significance, with higher weight of PHEV in sales
- **MILD:** somewhat postponed – take off expected in 2018
- **Stop-Start:** becoming standard within the next 6 years, almost 0% conventional engines in 2023
- **Significant Hybrid growth expected before 2020 to reach 95 g (expected 103g 2020, 88 g 2023)**

Source: 2013 Valeo Powertrain Forecast
Agenda

1. Market Analysis
2. Main issues of Hybrid / Electric vehicles
3. Simulation approach
4. Valeo Components
5. Conclusions
Main issue of Hybrid/Electric: COST!

- Cost of powertrain (£): 68% for GASOLINE STOPSTART, 29% for DIESEL STOPSTART.

Market Share 2012:
- Diesel: 1%
- Gasoline Stopstart: 2%
- Gasoline Mild Hybrid: 0%
- Gasoline Full Hybrid: 0%
- Gasoline PHEV: 0%
- BEV: 0%

Diesel today just represents the upper limit customers are ready to pay for. Hybrids won’t develop in mass market without a clear cost breakthrough.
Main issue of Hybrid/Electric: COST!

Main reason of high cost is battery voltage. The higher the voltage, the higher the cost.
Agenda

1. Market Analysis
2. Main issues of Hybrid / Electric vehicles
3. Simulation approach
4. Valeo Components
5. Conclusions
Optimized hybrid: simulation approach

Architecture study
- (e-Machine location)

Electric motor & battery
- (Technology, Power, Voltage, Capacity)

Mission profile
- (NEDC, WLTC, Artemis Urban)

Vehicle platform
- (Engine displacement, segment)

HEV simulation platform
- Supervisor model
- Vehicle & driver model
- Traction model

Energy Management
- Voltage and current curves
- Operating modes
- Energy storage

Fuel consumption
- CO2 saving
- Cost / gCO2

Optimized system
Architecture study

Electric Motor directly on the crankshaft of the engine
- Single Electric Machine
- Easy integration in case of belt driven system
- Low global efficiency due to engine losses
- Engine losses compensation by EM

Electric Motor between engine and gearbox with an additional clutch
- No engine losses to compensate
- Original clutch to be controlled & additional clutch required
- Integration issue on transversal engine
- Potential additional starter / alternator
- Torque control during engine start

Electric Motor behind the gearbox through a disconnect clutch
- No engine nor gearbox losses to compensate
- Torque continuity during gear change
- Original clutch to be controlled & additional clutch required
- Additional starter / alternator
- Speed range issue for electric motor efficiency

First conclusion: Easiest / cheapest system is with belt-driven machine
Operation modes

- Extended Stop / Start (even with manual gearbox), coasting
- Electric mode: running and take off (even with belt driven system)
- Generation mode & regenerative braking
- Torque assist / Overboost
Battery capacity sizing

Simulation results on B segment vehicle

NEDC results

- **EDLC max. storable energy [kJ]**
 - NEDC - MH1
 - NEDC - MH2
 - NEDC - MH3

- **Electric energy stored in EDLC during regenerative braking [kJ]**
 - ~50 kJ
 - ~75 kJ
 - ~75-105 kJ

Artemis urban results

- **EDLC max. storable energy [kJ]**
 - NEDC - MH1
 - NEDC - MH2
 - NEDC - MH3

- **Electric energy stored in EDLC during regenerative braking [kJ]**
 - 40-75 kJ
 - 40-75 kJ
 - 75-105 kJ

Second conclusion: Best value usable energy capacity < 100 kJ
Battery capacity sizing

- 100 kJ is the optimal usable level of energy

- However, to size the storage pack, need to apply SOC and safety factors
 - Using ultracapacitors, the only limit in SOC is voltage drop. To keep voltage at nominal level, we have then considered a maximum 50% depletion in use:
 - *We then considered the size of UCAPs pack at ~200kJ*
 - Using Li-Ion batteries, it is necessary to limit the SOC swing in order to have a good lifetime (ex: 30%). Also, the peak currents (12kW under 48V gives 250Amps) might seriously damage the battery. Hence, in accordance with battery makers, we have applied an additional safety factor of 2 to 3.
 - *We then considered the size of the Li-ion pack at ~600-900 kJ (~180-270Wh) – therefore, a Li-ion cell around 6Ah*

Third conclusion: Small storage capacity is enough (<900 kJ)
Fourth conclusion: best cost to value with a 6-8 kW BSG motor
Agenda

1. Market Analysis
2. Main issues of Hybrid / Electric vehicles
3. Simulation approach
4. Valeo Components
5. Conclusions
Valeo i-BSG Product Definition

E-machine description

- **Claw poles number**: 8pp
- **Interpolar magnets type**: Low Dy rate
- **Stator type**: U pins
- **Stator length**: 42mm
- **Phases number**: 2 x 3
- **Stator thermal sensor
- **Cooling**: Forced air convection
- **Electronics**: Integrated inverter
- **Protection level**: IP25
- **Weight**: 9,5kg

* Bracket diameter
** Without pulley
Valeo i-BSG Product Definition

E-machine Mappings

I-BSG double star machine + Inverter total efficiency at 44 Volt DC
(machine copper $T^c=100^\circ C$, MOS $T^c=100^\circ C$, 2 MOS Fairchild 30mm2)

Machine torque (Nm)

Rotor speed (rpm)

(% efficiency)
Valeo DC/DC Converter Definition

Prototype – Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic</td>
<td>Reversible buck (pre-charge and/or boost feature)
Uninsulated chopper with embedded EMC filters in LV side</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>Buck/Boost: 8 – 14 – 16V
Derating between 8 and 10V</td>
</tr>
<tr>
<td>Max Rated Power</td>
<td>2,5kW @ 14,5V</td>
</tr>
<tr>
<td>Efficiency</td>
<td>96% @ 500W
93,5% @ 2500W</td>
</tr>
<tr>
<td>Weight</td>
<td>< 3,1kg</td>
</tr>
<tr>
<td>Cooling</td>
<td>Air cooled with minimal air velocity 2m/s</td>
</tr>
<tr>
<td>Full Temperature Range</td>
<td>-30 to +75°C
Derating between 75 and 105°C</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP67, IPX9X</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>Full compliance with Li-Ion battery (bidirectional power flow when Vin > Vout)</td>
</tr>
</tbody>
</table>

- Bi-directional power flow → Can supply the energy storage unit with power
- High safety class (ASIL C), high power (2,5kW)
Valeo DC/DC Converter Definition

Prototype – Packaging

Dimensions

- Length: 218mm
- Width: 152mm
- Height: 78mm
- Volume: 2.6l

Estimated weight: 3kg

Control Board

Power Board Scalable Design
4 Cells
Demonstrator: BSG implementation on 1.6l Turbo GDI M/T: i-BSG integration scheduled.
Fuel economy results

Simulation results on NEDC cycle B segment vehicle

Extended stop start
Up to 5.5%

Regen and boost
Up to 5%

Electric modes
Up to 3-4%

13-15% Fuel economy can be achieved
Vehicle assessment

- **Stop Start extended function**
 - Faster starting with BSG machine than starter / starter generator
 - Very low vibration level and silent cranking
 - Capability of Reflex start & coasting up to 70kph
 - Excellent Engine stop assistance: -70% stop time & oscillation

- **Torque assist**
 - Transparent to the driver,
 - Turbolag compensation at low revs

- **Electric mode in running & take Off conditions**
 - Transparent switch from thermal to electric mode even in take off
 - Up to 30kph electric drive possible in steady state conditions, up to 20% driving time in city conditions

Overall excellent driveability
Cost estimate

- Total system cost estimate (Machine, Inverter, Battery, DCDC and ancillaries) in €
- Production volume sensitivity with projection up to 1 Mu/yr.

The value equation turns very positive with mass production volumes, in the 40€/g CO₂ range
Conclusion

- A 48V mild hybrid system can deliver 13 - 15% fuel economy

- A 48V system allows, through rightsizing of the storage element, to cut cost of current mild hybrids by half

- This is why we believe mild hybrids could go to mass-market and reach a 10-12% WW market shares in 2020.

Thank you